Geology Core Class Assessment 2016-2017 Part I: General Geology

There are two core lecture classes with accompanying labs in the Geology division of Geosciences. Both fulfill science core requirements in Fulbright College.

General Geology is a 1000-level survey course that is designed to familiarize students with the basic principles of physical geology. Earth Science is a 1000-level that builds on the basic principles covered in General Geology and focuses on the interactions of the atmosphere, hydrosphere, and geosphere and the interactions between humans and the environment.

The class goals are laid out in the syllabi and learning outcomes are assessed through a pre-test, post-test assessment system. Only the aggregate statistics are used in the assessment.

GEOS 1113: General Geology

Course Description and Goals: The primary goal of this course is to introduce undergraduate students to the principles of physical geology, Earth's internal structure and materials, and geologic time. Emphasis is on developing close connections between Earth materials and processes within a Plate Tectonic framework.

Learning Objectives: By the end of the course, students should be able to do the following:

- Classify major rock types and rock-forming minerals
- List the major divisions of geologic time and analyze relationships between rocks to determine their relative ages
- Describe how major landforms are related to geologic processes, especially plate tectonics
- Describe the processes responsible for various geologic hazards
- Interpret 3-D geologic structures from 2-D geologic maps and cross sections
- Distinguish between hypotheses and theories
- Summarize the theory of plate tectonics and the observations that support and led to the development of the theory

GEOS1113 Assessment results 2016-2017

The questions are appended to the end of this report.

GEOS1113 Section 003 – Spring 2017

	Pre-Test	Post-Test			
Question	# of Correct	# of Correct	Pre-Test	Post-Test	
Number	Answers	Answers	% Correct	% Correct	Difference
1	84	74	93%	97%	4%
2	29	26	32%	34%	2%
3	20	62	22%	82%	60%
4	23	29	26%	38%	12%
5	66	55	73%	72%	-1%
6	68	70	76%	92%	16%
7	56	65	62%	86%	24%
8	32	24	36%	32%	-4%
9	34	41	38%	54%	16%
10	50	54	56%	71%	15%
11	66	67	73%	88%	15%
12	22	26	24%	34%	10%
13	19	44	21%	58%	37%
14	37	60	41%	79%	38%
15	45	35	50%	46%	-4%
16	27	30	30%	40%	10%
17	14	45	16%	59%	43%
18	50	51	56%	67%	11%
19	15	26	17%	34%	17%
20	26	22	29%	29%	0%
Number of					
Students	90	76			

The average score on the Pre-test was 43.5%, while the average score on the Post-test was 59.6%, demonstrating an overall improvement in the level of geologic knowledge of the students. It is clear from the changes in the results from the pre test to the post-test that the students demonstrated clear knowledge increases on the majority of the questions with a 10% or greater increase in the number of correct answers on 14 out of 20 questions. For Questions 1, 2, 5, 8, 15, and 20, the change in student knowledge is negligible, either because the students already knew the material (questions 1 & 5) or these topics may not have received adequate enough coverage during the class to improve their knowledge in these areas (questions 2, 8, 15, & 20). Overall, it appears that the majority of course material is being taught effectively and students are leaving the class with a substantially greater knowledge of physical geology.

On the basis of these results we will consider minor modifications to the material taught.

GEOS1113 General Geology – Core Assessment Test

MULTIPLE CHOICE: Carefully read each question and all possible answers and choose the best answer.

 The three major cla 	asses of rock are kn	own as:					
a. crustal, subcrus	al b. sedim	b. sedimentary, igneous, and metamorphic					
c. volcanic, plutor	l d. weath	d. weathered, eroded, and cemented					
e. big rocks, smal	l rocks, and ugly ro	cks					
2. The most dominan	t rock associated w	ith our continent	s is known as:				
a. basalt	b. granite	c. limestone	d. marble	e. rhyolite			
2 14/1							
3. What are the three							
a. detrital, chemic			b. foliated, nonfoliated, contact				
c. intrusive, extru	•	d. obsidi	d. obsidian, basalt, andesite				
e. detrital, organi	c, porphyritic						
4. The most common	end product of the	chemical weath	ering of feldspar is:	:			
a. quartz	b. hornblende	c. clay	d. pyroxene	e e. calcite			
5. The Farth's interna	l heat engine cause	es hot rocks in the	e mantle to	, whereas colder			
rocks tend to		is not rooks in th					
a. contract and ris	se; expand and sink	c 1	o. expand and rise;	contract and sink			
c. expand and sink; contract and rise d. move laterally; stay stationary							
e. none of the ab	ove						
6. A is a sci	entific concept that	t has been highly	tested and is in all	likelihood true			
a. concept			d. scenario e. k				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,					
	ifer to meet the de	mands of heavy	domestic, industria	l, and agricultural water use,			
it must have:							
	b. high p		c. low poro	sity			
d. low permeabili	ty e. (a) an	d (b)					
8. Fossil evidence ind	icates that complex	clife forms devel	oped approximatel	y years before			
present							
a. 5, 440	b. 544 thousand	c. 544 m	illion d. 3.5 bill	lion e. none of the above			
9. Which of the follov	ving elements is no	t abundant in the	e Earth's crust:				
a. oxygen				aluminum			
7,0							
10. The Earth's lithos	•						
a. crust	b. asthenospher	e c. core	d. uppermost r	mantle e. (a) and (d)			
11. Earth is unique an	nong terrestrial nla	nets in that it:					
a. has liquid wate	-	nets in that it.					
•	here rich in nitroge	n and oxygen					
•	stem of (plate) tec						
d. supports a bios							
	unique attributes	of Earth					

a. b. c. d.	Benioff earthquake zone locates rift valleys on colling coincides with mid-ocea traces the descent of sublicates major strike-slip indicates the location of	ntinents nic ridges oducting sea-floo faults	r lithospheric sl		
a.	he majority of time in Ear . Cenozoic Era . Precambrian	th history is asso b. Paleozoic Era e. Phanerozoic	c. Mes	ozoic Era	
	Then a marine geologist coungest layer is on the top				
	. supposition . inclusion	b. suspension e. cross-cutting	relationships	c. superposition	
fo flo	ightly acidic ground water rm caves. This reaction m oor of an air-filled cave an . stalactites b. stala	ay then be rever d minerals are pı	sed as water dri	ps from the ceiling and rm features known as:	splashes on the
rei litl the a.	ne erosional removal of m moval of weight through hosphere. Such vertical m e Earth's lithosphere are l . plate tectonics . compressional stresses	melting of contin ovements to ach known as: b. magnetic and	ental scale ice s ieve gravitation omalies	heets can result in upli	ft of the n adjacent parts of
a.	ne inference that the Eart . density calculations . S-wave shadow zones	b. studies of m	eteorites	om c. P-wave shadow zor	nes
	he principle mineral form . quartz b. gyps		e d. calc	ite e. hematite	
a. b. c. d.	ruptions of shield volcand to be violent and potent to be explosive but shor not to be explosive or pa to result in the expulsion to cover the surrounding	ially dangerous e t-lived rticularly danger n of vast amount:	vents ous s of tephra	·	
a. c.	everse faults are example . dip-slip faults, tensional . strike-slip faults, tension . transform faults		b. dip-slip fault	esult from cs, compressional ults, compressional	stresses.